整数集合和正整数集合有啥区别
整数包括正整数、负整数、零什么是自然数集,有理数集,整数集,正整数集,实数集
1、自然数是指用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4……所表示的数。自然数由0开始,一个接一个,组成一个无穷的集体。自然数有有序性,无限性。分为偶数和奇数,合数和质数等。
2、有理数是指两个整数的比。有理数是整数和分数的集合。整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。
3、整数集:由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
4、正整数集就是即所有正数且是整数的数的集合,是在自然数集中排除0的集合,一直到无穷大。正整数集通常用符号N+、N*、N1、N>0表示。
5、实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
参考资料来源:百度百科-自然数
参考资料来源:百度百科-有理数
参考资料来源:百度百科-整数集
参考资料来源:百度百科-正整数集
参考资料来源:百度百科-实数集
正整数集合和整数集合包括哪些?
正整数集合:大于0的整数,包括从1开始的所有自然数。整数集合:包括所有小于0的负整数、0、大于0的正整数。
文章声明:以上内容(如有图片或视频亦包括在内)除非注明,否则均为网友提供,转载或复制请以超链接形式并注明出处。